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For thermal mixed-convection flows, the Nusselt number is a function of Reynolds
number, Grashof number and the angle between the forced- and natural-convection
directions. We consider flow over a heated cylinder for which there is no universal
correlation that accurately predicts Nusselt number as a function of these parameters,
especially in opposing-convection flows, where the natural convection is against the
forced convection. Here, we revisit this classical problem by employing modern
tools from machine learning to develop a general multi-fidelity framework for
constructing a stochastic response surface for the Nusselt number. In particular,
we combine previously developed experimental correlations (low-fidelity model) with
direct numerical simulations (high-fidelity model) using Gaussian process regression
and autoregressive stochastic schemes. In this framework the high-fidelity model is
sampled only a few times, while the inexpensive empirical correlation is sampled at
a very high rate. We obtain the mean Nusselt number directly from the stochastic
multi-fidelity response surface, and we also propose an improved correlation. This
new correlation seems to be consistent with the physics of this problem as we
correct the vectorial addition of forced and natural convection with a pre-factor that
weighs differently the forced convection. This, in turn, results in a new definition
of the effective Reynolds number, hence accounting for the ‘incomplete similarity’
between mixed convection and forced convection. In addition, due to the probabilistic
construction, we can quantify the uncertainty associated with the predictions. This
information-fusion framework is useful for elucidating the physics of the flow,
especially in cases where anomalous transport or interesting dynamics may be
revealed by contrasting the variable fidelity across the models. While in this paper
we focus on the thermal mixed convection, the multi-fidelity framework provides
a new paradigm that could be used in many different contexts in fluid mechanics
including heat and mass transport, but also in combining various levels of fidelity of
models of turbulent flows.
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1. Introduction
Mixed thermal convection is omnipresent in nature, from micoscales to atmospheric

scales, and it is distinctly different from its constituent modes, namely those of forced
and natural convection. In forced convection, the Nusselt number (Nu) is correlated
with the Prandtl (Pr) and Reynolds numbers (Re), while in natural convection the
Nusselt number can be expressed as a function of the Prandtl and Rayleigh (Ra)
numbers for different flow configurations. However, it was first observed by Lemlich
& Hoke (1956) in an experimental study that the local Nusselt number distribution in
natural convection over a heated cylinder is similar to the one in forced convection
over the cylinder if an effective Reynolds number is used for natural convection. The
thin laminar boundary layer theory has led to the generalization of this concept. In
one of the first theoretical studies, Acrivos (1966) showed the equivalence of the
mixed convection to forced convection for two asymptotic values of Prandtl numbers
for laminar boundary layer conditions. In particular, Acrivos (1966) showed that the
following equivalence between different dimensionless groups would result in the
same local Nusselt number:

Grx = Re2
xPr1/3 as Pr→∞, (1.1)

Grx = Re2
x as Pr→ 0, (1.2)

where Gr = Ra/Pr is the Grashof number. These results were later extended by
Churchill & Usagi (1972) to construct correlations for the intermediate-range Prandtl
numbers by taking the power mean of the asymptotic limits.

As noted recently by Churchill (2014), the concept of equivalence has a great
potential in that it provides a new structure for assembling data on thermal transport
and a new means for predictive heat transfer. In that study, an equivalence expression
Grx = A{Pr}Re2

x was formulated by seeking the coefficient of proportionality A{Pr}
between the Grashof number and the square of the Reynolds number. Churchill’s
work revealed a surprising generality in predicting the Nusselt number for natural
convection from forced convection or vice versa once the algebraic relationship
A{Pr} is discovered. Specifically, A{Pr} varies smoothly for surfaces with uniform
temperature to surfaces with uniform heat flux, and it holds true for a wide variety
of geometries.

For mixed-convection flows the Nusselt number is a function of Reynolds number,
Grashof number and the angle θ between the forced- and natural-convection directions
(see figure 2a). The majority of the studies so far have investigated the cases of aiding
convection (θ = 0◦) and opposing convection (θ = 180◦); see for example Acrivos
(1966), Sparrow & Lee (1976), Churchill (1977), Patnaik, Narayana & Seetharamu
(1999), Sharma & Eswaran (2004), Hu & Koochesfahani (2011). Most commonly,
mixed-convection correlations are constructed by combining existing pure forced (NuF)
and natural (NuN) convection correlations in the form of the power mean, i.e.

Nun =Nun
F ±Nun

N, (1.3)

where the plus sign applies for the aiding flow and minus sign applies for opposing
flow, and the exponent n is obtained as the best fit to the data. In the above expression,
NuN is commonly replaced by an equivalent forced-convection Nusselt number
(see Churchill 1977 and references therein).

The effect of continuous variation of θ on the Nusselt number is relatively under-
explored. Oosthuizen & Madan (1971) investigated the effect of flow directionality
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FIGURE 1. (Colour online) Nusselt number versus effective Reynolds number for mixed
convection around a cylinder obtained from the experiments of Hatton et al. (1970)
(blue symbols) and our direct numerical simulations (DNS) (red symbols). The black
curve suggested by Hatton et al. (1970), corresponds to a correlation obtained from the
‘equivalence’ concept using experimental data from forced and natural convection. The
disparity observed is due to parametric space compression, which is here represented by
the effective Reynolds number, i.e. Reeff (see the main text for more explanation). In the
present study, the experimental correlation is employed as a low-fidelity approximation for
the mixed convection, while the high-fidelity approximation is obtained from DNS.

for θ = 0◦, 90◦, 135◦ and 180◦. For a fixed θ , they proposed a correlation of the
form Nu/Nuf = f (Gr/Re2), where Nuf is the corresponding Nusselt number at
the same forced-convection flow. However, no universal correlation in the form
Nu = f (Re, Gr, θ) was suggested. For other values of 0◦ < θ < 180◦, Hatton, James
& Swire (1970) introduced an effective Reynolds number by vectorially adding the
Reynolds numbers of the forced convection and the equivalent natural convection
(see (3.8)). The effective Reynolds number was then used in the forced-convection
correlation to predict the Nusselt number around a heated cylinder. Therefore, this
yields a correlation for the Nusselt number as a function of Nu = f (Re, Gr, θ).
However, for opposing convection, the flow dynamics is distinctly different from its
corresponding ‘equivalent’ forced convection. As Hatton et al. (1970) and several
other investigators (Badr 1984; Sharma & Eswaran 2004) have indicated, this
approach yields unsatisfactory results for opposing convection i.e. 90◦ < θ < 180◦.
These observations suggest an incomplete similarity of the Nusselt number with
respect to the angle θ .

The combined error induced by using the concept of equivalence between the
two flows, and the vectorial addition of the forced-convection and natural-convection
Reynolds number can be significant. In figure 1, the Nusselt number versus the
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FIGURE 2. (Colour online) (a) Schematic of mixed convection of flow over a cylinder.
The average Nusselt number of mixed convection for flow over a cylinder is expressed as
Nu= f (Re, Ri, θ). (b) Multi-fidelity modelling framework.

effective Reynolds number Reeff obtained from the experimental measurements (blue
symbols) by Hatton et al. (1970), the experimental correlation (black curve), and
the direct numerical simulation (DNS) (red symbols) are shown. Note that the
experimental and numerical samples are not necessarily at the same Re, Gr and θ .
Since the specific values of Re, Gr and θ are not specified in the experimental
study, a one-to-one correspondence between the DNS and experimental measurements
cannot be established. It is clear that the experimental correlation exhibits variable
degree of fidelity as a function of Reeff . It appears that for larger values of Reeff , the
correlation is more accurate than for the lower Reeff .

However, despite the discrepancy between the correlation and the experimental/DNS
results, the equivalence theory (black curve) still captures the major trend of variation
of the average Nusselt number versus the effective Reynolds number. In other words,
the corresponding correlation provides an acceptable variation of the Nu versus
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Reeff albeit somewhat erroneous. We will consider this correlation as a model for
the Nusselt number that contains low-fidelity information. On the other hand, the
DNS response serves as an accurate prediction and therefore it contains high-fidelity
information. It is therefore desirable to exploit the low-fidelity response of the
system, particularly since it is cheap to sample it. The objective of the current study
is to blend the low-fidelity experimental response with a relatively small number
of high-fidelity DNS runs in an information-fusion framework, and to construct
a stochastic response surface that will serve as a significant improvement to the
empirical correlation used so far in mixed convection.

Combining low-fidelity models with high-fidelity models is not a trivial task, and
it is only possible if modelling and parametric uncertainties at every level of fidelity
are taken explicitly into account. In the present work, we adopt a non-parametric
Bayesian regression framework that is capable of blending information from sources
of different fidelity, and provides a predictive posterior distribution from which we
can infer quantities of interest with quantified uncertainty. Our work is inspired by the
pioneering work of Kennedy & O’Hagan (2000) and relies on Gaussian process (GP)
regression at the high-fidelity level (DNS) and the low-fidelity level (experimental
correlation). This supervised learning approach is based on parametrizing pre-specified
autocorrelation kernels via the proper hyper-parameters, which are subsequently
computed on-the-fly from observed data, along with the bias or modelling error
at every level of fidelity. The technical details will be shown later in § 3.3, but it
suffices here to say that a key component of this methodology is the exploration
of cross-correlations between the high-fidelity and low-fidelity quantities. Moreover,
leveraging the probabilistic structure of the GP predictive posterior distribution, one
may design intelligent sampling strategies for further data acquisition. In particular,
by exploring the mean and variance values, we can assess the improvement of the
predictability of the response surface by selecting new ‘sweet spots’ where new
experiments or DNS can be used as new samples of high-fidelity information. This
framework, therefore, provides a new paradigm in predicting heat transfer, one
that employs heavily existing experimental correlations and enhances greatly their
utility by combining them with high-fidelity information from DNS or from detailed
experimental measurements using e.g. PIV (particle image velocimetry) or DPIV
(digital particle image velocimetry) and DPIT (digital particle image thermometry)
(Ronald 1991; Pereira et al. 2000; Eckstein & Vlachos 2009). This field information
is also very useful in elucidating the physics of the flow and especially in cases
where anomalous transport or interesting dynamics may be revealed by the data or
the multi-fidelity surrogate model.

The rest of the paper is organized as follows: in § 2 we introduce the statement
of the problem that involves mixed convection around a heated cylinder. In § 3 we
present an overview of the multi-fidelity framework and in § 4 cross-validation results.
In § 5 we present the multi-fidelity results and we conclude in § 6 with a short
summary.

2. Problem statement
The schematic of the problem is shown in figure 2(a). The origin of the coordinate

system is at the centre of the cylinder, ex and ey denote the unit vector in the x and
y directions respectively and eg is the unit vector along the direction of gravity. The
angle between U∞ and gravity g = geg is denoted by θ . As such, θ = 0◦ represents
aiding convection, θ = 180◦ opposing convection and θ = 90◦ cross-flow convection.
The surface temperature of the cylinder is denoted by Ts and the far field temperature
by T∞.
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The problem of mixed-convection flow over a cylinder can be characterized by three
non-dimensional parameters of Reynolds number, namely Re = U∞D/ν, Richardson
number Ri = Gr/Re2 and θ , where Gr = gβ(Ts − T∞)D3/ν2 is the Grashof number
and D is the diameter of the cylinder, ν is the kinematic viscosity of the fluid and β
is the thermal expansion rate. Therefore, the average Nusselt number can be written
as a function of these three parameters:

Nu= f (Re, Ri, θ). (2.1)

The objective of this study is to seek the above functional map f . We do so by
combining a relatively small number of high-fidelity DNS with a large number of
samples drawn from existing experimental correlations. The three parameters constitute
a three-dimensional parametric space denoted by x = {Re, Ri, θ}. We consider the
following ranges for each dimension:

0 6 Re 6 40, 0 6 Ri 6 1 and 0◦ 6 θ 6 180◦. (2.2a−c)

We note that Ri= 0 corresponds to pure forced convection and Re= 0 corresponds to
pure natural convection. The angle θ varies continuously from aiding flow (θ = 0◦) to
opposing flow (θ = 180◦). We choose the fluid to be air with Pr = 0.7 in our entire
study.

3. Multi-fidelity framework
In this section we describe both the high- and the low-fidelity models, and present

how the predictions from these two models are combined to yield a multi-fidelity
stochastic response surface for the average Nusselt number (see figure 2b).

3.1. High-fidelity model
As a high-fidelity approximation, we consider the incompressible flow, along with the
Boussinesq approximation, to model the mixed convection. These equations in non-
dimensional form are given by:

∇ · u= 0, (3.1)
∂u
∂t
+ (u · ∇)u=−∇p+ 1

Re
∇2u+ RiTeg, (3.2)

∂T
∂t
+ (u · ∇)T = 1

RePr
∇2T. (3.3)

We solve the above equations at a relatively low Reynolds number and in a two-
dimensional domain whose schematic is shown in figure 2(a). The forced convection
is enforced at the top boundary condition via u = −U∞ey and T∞ = 0, and on all
other side boundaries convective outflow boundary condition is used. On the cylinder
surface, the no-slip boundary condition and the isothermal boundary condition Ts = 1
are used.

We perform DNS using the spectral/hp element method (see reference Karniadakis
& Sherwin (2005) for more details of the spectral/hp element method and see
references Babaee, Acharya & Wan (2013a), Babaee, Wan & Acharya (2013b)
for validation of the code for heat transfer applications). We use a quadrilateral
discretization with nearly 15 000 elements and spectral polynomial order of P = 4.
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FIGURE 3. (Colour online) (a) Quadrilateral mesh for the DNS with nearly 15 000
elements and spectral polynomial P= 4; (b) close-up view of the mesh near the cylinder;
(c) validation of DNS for forced convection around a heated cylinder. Comparison of the
experimental correlation with DNS. The same correlation (3.4) is used for estimating the
Nusselt number for mixed convection by replacing Re with an effective Reynolds number
Reeff from (3.8).

The computational grid is shown in figure 3(a), and a close-up view of the mesh
near the cylinder is shown in figure 3(b).

We have validated the high-fidelity approximation for the case of pure forced
convection. For the time-dependent cases we compute the time-averaged Nusselt
number. In figure 3(c) the average Nusselt number obtained from DNS is compared
against the experimental correlation that is presented later in (3.4). A good agreement
is observed.
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3.2. Low-fidelity model
The low-fidelity approximations are obtained based on the vectorial addition approach,
first introduced by Hatton et al. (1970). This approach is based on the concept of
equivalence between natural-convection and forced-convection flows. In this approach,
for a pure natural-convection flow at Rayleigh number Ra, an equivalent Reynolds
number Ren is found such that the corresponding pure forced-convection flow at Ren
would generate the same Nusselt number as the pure natural-convection flow. This can
be obtained by equating the correlations of forced and natural-convection flows given
by:

Nuf = 0.384+ 0.581Re0.439
f , forced convection, (3.4)

Nun = 0.384+ 0.59Ra0.184, natural convection, (3.5)

to obtain an equivalent Reynolds number:

Ren = 1.03Ra0.418. (3.6)

For a mixed-convection flow, an effective Reynolds number is calculated based on the
vector addition of the forced convection and natural convection (Hatton et al. 1970):

Reeff = |Ref ey + Reneg|, (3.7)

from which we obtain the effective Reynolds number (for air):

Re2
eff = Re2

f

[
1+ 2.06

(
Ra0.418

Ref

)
cos θ + 1.06

(
Ra0.836

Re2
f

)]
. (3.8)

The effective Reynolds number Reeff is then used to compute the average Nusselt
number from (3.4). Therefore, the low-fidelity model is given by:

NuLF = 0.384+ 0.581Re0.439
eff . (3.9)

The above approach approximates the average Nusselt number with a variable
degree of accuracy. To investigate this more closely, in figure 4 three cases of aiding
flow (θ = 0◦), cross-flow (θ = 90◦) and opposing flow (θ = 180◦) at Re = 40 and
Ri= 1 are shown. The first column shows the local and average Nusselt number, and
the second and third columns show the equivalent forced convection at Reeff and the
mixed convection at the corresponding angle θ .

In the case of the aiding flow, the effective Reynolds number is Reeff = 59.4, which
is larger than the first critical Reynolds number (Recir ' 49) for flow over cylinder.
Therefore, the von Kármán street appears behind the cylinder. On the other hand, the
aiding flow has stabilizing effect and the mixed-convection flow is steady. Moreover, at
Re= 40 and Ri= 1, the mixed-convection flow remains attached to the surface of the
cylinder and no recirculation region appears downstream, unlike the forced-convection
flow. This is consistent with the observations in the numerical study carried out by
Badr (1984). Despite these structural differences between the mixed-convection and
equivalent forced-convection flows, the average and local Nusselt numbers in both
cases are close, rendering the vectorial addition approach suitable for approximating
the Nusselt number for aiding convection.

At θ = 90◦, the effective Reynolds number is Reeff = 44.4 and both mixed-
convection and the equivalent forced-convection flows are steady. However, for
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FIGURE 4. (Colour online) (a,d,g) The local (solid lines: DNS) and the average (dashed
lines: DNS) Nusselt number. (b,e,h) Mixed convection at Re = 40 and Ri = 1. The
circles correspond to experimental correlation at the effective Reynolds number. (c,f,i)
Forced convection at the effective Reynolds number, i.e. Reeff , which is function of θ .
The simulations have been performed for three different angles of aiding flow (θ = 0◦),
cross-flow (θ = 90◦) and opposing flow (θ = 180◦).
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the mixed-convection flow the symmetry of the wake is broken due to the cross-flow,
resulting in an asymmetric local Nusselt number distribution. However, the equivalent
forced-convection flow remains symmetric, and the difference in the average Nusselt
number between the two cases is larger than that of the aiding flow.

For the opposing convection (θ = 180◦), the difference between the equivalent flow
and the mixed-convection heat transfer is significant. Due to the opposing convection,
a stagnation point forms in the wake of the cylinder at φ = 180◦ (see figure 2a for
the definition of φ), resulting in the largest value of the local Nusselt number at the
stagnation point. Two separation points appear near φ = 60◦ and φ = 300◦ leading to
two minima in the local Nusselt number. Moreover, the mixed-convection flow is time
dependent. These structural differences in the flow result in a significant (nearly 25 %)
deviation in the average Nusselt number between the equivalent forced-convection and
the mixed-convection flow.

The above observations demonstrate that the low-fidelity model exhibits variable
degree of accuracy in representing the mixed-convection flow with the largest
discrepancy in the range of 90◦ < θ < 180◦.

3.3. Gaussian processes for multi-fidelity modelling
Given a small set of high-fidelity data obtained from DNS and a larger set of data
generated by the low-fidelity experimental correlations, our goal is to construct an
accurate representation of the functional relation of (2.1). The main building blocks of
our multi-fidelity modelling approach are GP regression and autoregressive stochastic
schemes, see Kennedy & O’Hagan (2000), Rasmussen (2006), Gratiet & Garnier
(2014), Perdikaris et al. (2015). In the GP context, we treat the regression task
as a supervised learning problem, where we consider a vector of input variables
x ≡ (Re, Ri, θ) and an output vector containing the corresponding realizations
of the observed Nusselt number, y ≡ Nu. Then, we assume that such a dataset
D = {xi, yi} = (X, y) of i = 1, . . . , N was generated by an unknown mapping f (x),
possibly corrupted by zero mean Gaussian noise, i.e. ε ∼ N (0, σ 2

ε I), where I is the
N ×N identity matrix. This leads to an observation model of the form

yi = f (xi)+ εi. (3.10)

The unknown function f (·) is assigned a zero mean multi-variate Gaussian process as
the prior, i.e. f = f (X)∼GP( f |0,K ), where K ∈RN×N is the covariance matrix. Each
element of K is generated by a symmetric positive–semidefinite kernel function as
Kij= k(xi, xj), that quantifies the pairwise correlation between the input points (xi, xj).
The choice of the kernel function reflects our prior knowledge on the properties
of the function to be approximated (e.g. regularity, monotonicity, periodicity, etc.),
and is typically parametrized by a set of hyper-parameters θ that are learned from
the data. Without loss of generality, here we will consider kernel functions arising
from the stationary Matérn family, see Rasmussen (2006). In particular, all results
presented in §§ 4 and 5 are produced using an anisotropic Matérn 5/2, resulting to
response surfaces that are guaranteed to be twice differentiable. In general, the Matérn
5/2 family of kernels provides a flexible choice of priors for modelling continuous
functions. The choice of a 5/2 kernel here is not motivated by a particular property
of the system under study, but it was adopted merely because of its simplicity and
popularity in the field of spatial statistics. However, in § 4, we perform a rigorous
validation study to confirm that this kernel choice results in a surrogate model that
can generalize well and achieve high predictive accuracy for the datasets used here.
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Assuming a Gaussian likelihood p(y| f ) = N (y| f , σ 2
ε I), the posterior distribution

p( f |y, X) is tractable and can be used to perform predictive inference for a new
output f∗, given a new input x∗ as

p( f∗|y, X, x∗)=N ( f∗|µ∗, σ 2
∗ ), (3.11)

µ∗(x∗)= k∗N(K + σ 2
ε I)−1 y, (3.12)

σ 2
∗ (x∗)= k∗∗ − k∗N(K + σ 2

ε I)−1kN∗, (3.13)

where k∗N = [k(x∗, x1), . . . , k(x∗, xN)], kN∗ = kT
∗N , and k∗∗ = k(x∗, x∗). Predictions are

computed using the posterior mean µ∗, while prediction of uncertainty is quantified
through the posterior variance σ 2

∗ . The vector of hyper-parameters θ is determined
by maximizing the marginal log-likelihood of the observed data (the so called model
evidence), see Rasmussen (2006), i.e.

log p(y|X, θ)=−1
2

log |K + σ 2
ε I| − 1

2
yT(K + σ 2

ε I)−1 y− N
2

log 2π. (3.14)

The GP regression framework can be systematically extended for constructing
probabilistic models that can combine multi-fidelity information sources, see Kennedy
& O’Hagan (2000), Gratiet & Garnier (2014), Perdikaris et al. (2015), Perdikaris
& Karniadakis (2016). In our case, we have two levels of variable-fidelity model
output containing predictions of the Nusselt number for different values of (Re,Ri, θ),
originating from the low-fidelity experimental correlations, and the high-fidelity
DNS. Consequently, we can organize the observed data pairs by increasing fidelity
as Dt = {X t, yt}, t = 1, 2. Then, y2 denotes the output of the most accurate and
expensive model (DNS), while y1 is the output of the cheapest and least accurate
physical model available (experimental correlations). In this setting, the autoregressive
scheme of Kennedy & O’Hagan (2000) reads as

f2(x)= ρf1(x)+ δ(x), (3.15)

where ρ is a scaling factor that quantifies the correlation between the model outputs
{y2, y1}, and δ(x) is a Gaussian process distributed with mean µδ and covariance
kernel K 2. This construction implies the Markov property

cov
{

f2(x), f1(x′)|f1(x)
}= 0, ∀x 6= x′, (3.16)

which translates into assuming that given the nearest point f1(x), we can learn nothing
more about f2(x) from any other model output f1(x′), for x 6= x′ (Kennedy & O’Hagan
2000).

Indeed, the contribution of the low-fidelity model in the high-fidelity predictions
is captured though the cross-correlation parameter ρ in (3.15). In this work we treat
this parameter as an unknown constant scaling factor that is learned from the data by
maximizing the marginal likelihood of the multi-fidelity GP surrogate. More generally,
one could account for space-dependent cross-correlations between the low- and high-
fidelity models by learning a ρ that is a parametric function of the input variables, i.e.
{Re, Ri, θ}, although, for simplicity, this is not pursued in this work.

Although here we only have two fidelity levels, our construction can be extended
to accommodate arbitrarily many information sources. In general, we can construct
a numerically efficient recursive inference scheme by adopting the derivation put
forth by Gratiet & Garnier (2014). Specifically, this is achieved by replacing the
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GP f1(x) appearing in the second inference level (see (3.15)), with another GP
f̃1(x), which is conditioned on the training data and predictions of the first inference
level (see (3.12), (3.13)), while assuming that the corresponding experimental design
sets {D1, D2} have a nested structure, i.e. D1 ⊆ D2. Now, the inference problem is
essentially decoupled into two standard GP regression problems, finally yielding the
multi-fidelity predictive mean and variance given by

µ2,∗(x∗)= ρµ∗(x∗)+µδ + k∗N2(K 2 + σ 2
ε2

I)−1[y2 − ρµ∗(x2)−µδ], (3.17)

σ 2
2,∗(x∗)= ρ2σ 2

∗ (x∗)+ k∗∗ − k∗N2(K 2 + σ 2
ε2

I)−1kN2∗, (3.18)

where kN2∗= kT
∗N2

quantifies the cross-correlation between the test point x∗ and the N2
training point locations where we have Nusselt number observations from DNS. Also,
σ 2
ε2

is the noise variance that is potentially corrupting these observations y2.
The vector θ summarizes all model parameters and kernel hyper-parameters that are

learned from the training data through maximum likelihood estimation. In particular,
in the first step of our recursive inference algorithm, θ includes the noise variance
σ 2
ε1

and the kernel length scale and variance hyper-parameters of the GP surrogate
modelling the low-fidelity data (kernel K ). At the second recursive level, θ includes
the noise variance σ 2

ε2
, the kernel length scale and variance hyper-parameters of the GP

surrogate modelling the high-fidelity data (kernel K 2), as well as the cross-correlation
parameter ρ and the mean term µδ that captures the discrepancy between the low- and
high-fidelity models.

Our subsequent analysis is based on a nested experimental design consisting of
NLF = 1100 low-fidelity and NHF = 300 high-fidelity points obtained using a space-
filling Latin hypercube sampling strategy (Forrester, Sobester & Keane 2008).

In figure 5, nine cases of the instantaneous temperature contours are shown. These
cases are chosen from the 300 high-fidelity sample points in the three-dimensional
parametric space. The points chosen are closest points to the nine points given by the
set Ris× θ s×Res with Ris={0.0, 0.5, 1.0} and θ s={0.0, 90.0, 180.0} and Res={40.0}.
At small Richardson number, the mixed-convection flow reduces to forced convection.
These points are represented by the figure 5(a,d,g). At Richardson number near Ri=
0.5, depicted in figure 5(b,e,h), as θ increases from (h) to (b), the free-convection
role changes from aiding to opposing. The aiding flow reduces the boundary layer
thickness resulting in an increase in the Nusselt number. For the cross-flow convection,
θ = 87.1◦, an asymmetric wake emerges while the boundary layer thickness has grown
compared to the aiding convection, thereby the Nusselt number is reduced. At larger
angle θ = 152.1◦, the geometry of the wake is completely different from that of the
aiding convection with much earlier separation angle and larger separation bubbles in
the wake region. In the rightmost column of figure 5, the effect of change of angle
at higher Richardson number (Ri' 1) is shown. At higher Ri, vortex shedding occurs
as θ increases from aiding flow to cross-flow. At larger θ , the size of the vortices
increases as a result of the opposing convection.

In figure 6(a) the correlation between the low-fidelity and the high-fidelity
measurements are shown. The horizontal axis shows the average Nusselt number
obtained from high-fidelity DNS samples and the vertical axis is the corresponding
low-fidelity measurements. Therefore, the larger the discrepancies between y= x line
and the points are, the less accurate the low-fidelity models are at those points. It
is clear from figure 6(a) that for the majority of the points the low-fidelity model
overpredicts the average Nusselt number. In figure 6(b), the points with θ > 90◦
are excluded, and therefore only points with aiding convection are shown. Clearly,
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FIGURE 5. (Colour online) (Colour online) Instantaneous temperature contours for mixed
convection around a heated cylinder at different points in the parametric space obtained
from DNS (high-fidelity) model. The figure is organized with Richardson number Ri
increasing from 0 to 1 from left to right, and θ increasing from 0 to 180◦ from bottom
to top. The nine samples are chosen from the training set with closest points to the set
Ris × θ s × Res with Ris = {0.0, 0.5, 1.0}, and θ s = {0.0, 90.0, 180.0} and Res = {40.0}.

the remaining points have a smaller degree of discrepancy with the high-fidelity
model. This confirms that the low-fidelity model, on the average, performs more
poorly in cases with the opposing-convection components, than the ones with the
aiding-convection components.

4. Cross-validation test
In this section we perform a cross-validation test for the multi-fidelity models. We

split the high-fidelity training set, consisting of NHF = 300 points in the parametric
space, to two disjoint sets: one that is actually used for training the model with Nt
points randomly chosen from the training set and the other which consists of Ncv =
NHF − Nt remaining points that are used to cross-validate the model. In all of the
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FIGURE 6. (Colour online) Correlation of Nusselt number (NuLF) obtained from a low-
fidelity model – see (3.9) – with high-fidelity (NuLF) DNS. Shown are: (a) 300 points
uniformly distributed in the parametric space; (b) only points with the aiding convection
θ < 90◦. These results demonstrate that the low-fidelity model is more accurate for the
aiding-convection case and less accurate for the opposing-convection case.

cross-validation cases considered here all of the low-fidelity points (NLF = 1100) are
included. The error is the L2 error defined as:

ε2 = 1
Ncv

Ncv∑
i=1

(NuMF
i −NuHF

i )2, (4.1)

where NuHF
i are obtained by performing high-fidelity simulations at selected points in

the parametric space and NuMF
i are obtained by evaluating the multi-fidelity model at

those points. Since the Nt training points are selected randomly out of the 300 points,
to estimate the error, we calculate the error of an ensemble of the models in the
following fashion. We first create M surrogate models each obtained from N < NHF
high-fidelity points – selected randomly from NHF points – along with NLF = 1100
low-fidelity models. We calculate the error for each of these models according to (4.1).
We then calculate the mean and variance of the error estimate, denoted by ε2 and
σε2 respectively, for the batch of M models. We repeat this calculation for different
number of high-fidelity points Nt.

We also compute the error for a response surface obtained only from the
high-fidelity model via Gaussian regression, which we refer to as high-fidelity model,
since it is only based on the DNS runs and no low-fidelity model is used. The
procedure for calculating the error in this case is analogous to the multi-fidelity
models. To compare the accuracy of the response surface between the multi-fidelity
and high-fidelity models, the mean and variance of the error estimate are shown
in figure 7. In both figures 7(a) and 7(b), the horizontal axis shows the number
of high-fidelity points (Nt) used in training the model. Since the evaluation of
the low-fidelity model comes at negligible cost, the number of training points,
whose functional evaluation requires the high-fidelity model, is a direct measure of
the computational cost of constructing the models. To train the multi-fidelity and
high-fidelity models, the same high-fidelity training points in the parametric space
are chosen. As shown in figure 7(a), the error in both models decreases rapidly
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FIGURE 7. (Colour online) Comparison of the L2 error (a) mean; (b) standard deviation of
Gaussian regression and multi-fidelity methods as a function of number of training points.
The L2 error is obtained by an ensemble average over one hundred models with each
model construed by randomly sampling the design space. The smaller standard deviation
of the multi-fidelity model demonstrates that it is more robust compared with respect to
the sampling points compared to the single level Gaussian processes regression.

for the first 30 training points, in which a significant improvement of the response
takes place. For more than 30 training points a constant rate of improvement in the
response emerges. For all the training points, the multi-fidelity model outperforms the
Gaussian regression response surface. Note that absent of using the low-fidelity input,
the multi-fidelity approach reduces to Gaussian regression. Therefore the improvement
resulted from using the low-fidelity measurements is significant. For example, the
multi-fidelity model with five training points has the same accuracy as the Gaussian
regression response surface with roughly 18 training points.

The standard deviation of the error can be taken as a measure of sensitivity to
the selection of the training points. A large standard deviation in the error implies a
large degree of variability with respect to the selected training points and vice versa
for the smaller standard deviation. In figure 7(b) the standard deviation of the error
for different number of training points is shown. It is to be expected that for smaller
number of training points, i.e. N < 30, the sensitivity with respect to the selected
points would be larger, and for large points smaller. This behaviour is observed
in figure 7(b). Moreover, the multi-fidelity model exhibits smaller sensitivity to the
training point selection than the Gaussian regression for all the model sizes. This
behaviour can be clearly seen in figure 7(b). This reveals the better robustness of the
multi-fidelity models compared with high-fidelity models, as the multi-fidelity model
does not depend on the sample selection as strongly as the high-fidelity model does.

In figure 8, the scatter plots of different multi-fidelity models versus high-fidelity
observations are shown. The multi-fidelity models are trained with 10 (figure 8b),
20 (figure 8c) and 30 (figure 8d) high-fidelity points and 1100 low-fidelity points.
figure 8(a) is identical to figure 6(a), and it is shown here for the sake of comparison
with other plots. These plots clearly show that as the number of high-fidelity points
increases, the scatter points coalesce around y = x and the variance of the estimate
decreases.

Our goal here was to create a dataset that is large enough to give a measure
of predictive accuracy for the trained surrogates, while maintaining a reasonable
computational budget. In particular, in most validation cases considered in this paper
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FIGURE 8. (Colour online) Correlation of Nusselt number obtained from (a) low-fidelity
(NuLF) (b,c,d) (NuMF) multi-fidelity models with different number of training points. In the
multi-fidelity (b,c,d), all NLF = 1100 points are used. These plots show that as the number
of high-fidelity observations increases, the multi-fidelity model becomes more accurate.

we have only used a small portion of the data to train the GP surrogates, and
the rest of the data points were used to assess the generalization abilities of the
trained surrogates to unobserved cases. Although sampling the algebraic low-fidelity
model essentially comes at no cost, we limited ourselves to 1100 samples as this
resolution is adequate to resolve the variability of the quantity of interest (i.e. the
Nusselt number) in the three-dimensional parametric domain. On the other hand,
the high-fidelity DNS simulations are performed in parallel clusters and introduce
a significant computational cost. To this end, the 300 realizations we were able
to obtain appear sufficient to fulfil the aforementioned validation objectives, while
keeping the computational cost at manageable levels.

5. Multi-fidelity results
5.1. Response surface

The most accurate multi-fidelity model constructed in this study is the one based on
all the training points, i.e. NLF=1100 low-fidelity and NHF=300 high-fidelity samples.
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FIGURE 9. (Colour online) (a) Averaged Nusselt number computed from the multi-fidelity
response surface constructed from 300 high-fidelity and 1100 low-fidelity training points
at Re= 30. (b) Relative error percentage of the low-fidelity model in the Nusselt number
computed by E= (NMF−NLF)/NMF×100. The larger error corresponds to high Richardson
number with opposing convection while small error is observed in two regimes: (i)
dominant forced-convection flow, i.e. Ri� 1 and (ii) aiding convection i.e. θ < 90◦.

This model serves as the reference response surface, against which the accuracy of the
other models is compared.

The multi-fidelity framework provides uncertainty of the predictions. In figure 9(a),
the average Nusselt number obtained from the multi-fidelity model with 300
high-fidelity and 1100 low-fidelity samples model is shown for Re = 30 in the
plane of Ri − θ . First, we note that θ = 0◦ and θ = 180◦ are symmetry planes in
the three-dimensional parametric space {Re, Ri, θ}. As it is seen in figure 9(a), the
symmetry at θ = 0◦ and θ = 180◦ lines is captured by the multi-fidelity surface
where the Nusselt number contours are normal to these two lines. Moreover, at any
given Richardson number, Nusselt number decreases with θ increasing from aiding
convection at θ = 0◦ to opposing convection at θ = 180◦. For θ < 90◦, i.e. cross-flow
with aiding convection, Nusselt number increases as the Richardson number increases,
while for θ > 90◦ Nusselt number decreases with increasing the Richardson number.

Now we use the reference multi-fidelity model to measure the error of the low-
fidelity model. We compute the relative error percentage as:

E = (NuMF −NuLF)/NuMF × 100. (5.1)

The contours of the above error are shown in figure 9(b) for the same section of
the parametric space chosen for figure 9(a). First, we note that at Ri= 0 the mixed
convection reduces to forced convection. As such, the low-fidelity model is accurate
since the effective Reynolds number becomes equal to the forced-convection Reynolds
number and the low-fidelity model is effectively expressed by (3.4). Since (3.4) is
obtained by curve fitting to the experimental measurement, a very small error level
is expected. This is reflected in the error contours as small error is observed near
Ri = 0. Next, we observe that for cross-flow with aiding convection (θ < 90◦) the
relative error is less than 5 %. However, with increasing θ beyond 90◦, the low-fidelity
model becomes less accurate. The loss of accuracy is worsened with increasing the
Richardson number. An error of nearly 30 % is observed for the opposing flow at
Ri' 1.
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FIGURE 10. (Colour online) Nusselt number comparisons between multi-fidelity, high-
/low-fidelity versus angle θ at Re= 30 and Ri= 1: (a,b) show that the prediction improves
by simultaneously increasing number of training points in both, whereas (c,d) show the
effect of improving the number of low-fidelity samples. The extra five (DNS) data denoted
by symbols were not used in any of the training and they are independent DNS to verify
the accuracy of the multi-fidelity prediction.

5.2. Uncertainty of the predictions
In the multi-fidelity framework the uncertainties associated with the predictions can
be quantified. Figure 10 shows the average Nusselt number at Re = 30 and Ri = 1
as a function of θ for a variety of models. The low-fidelity model is expressed by
(3.9). The multi-fidelity models are constructed with five high-fidelity and 30 low-
fidelity points (figure 10a), 30 high-fidelity and 100 low-fidelity points (figure 10b),
10 high-fidelity and 30 low-fidelity points (figure 10c) and 10 high-fidelity and 100
low-fidelity points (figure 10d). The multi-fidelity model with 300 high-fidelity and
1100 low-fidelity points is shown only in figure 10(b) as a reference response. We
also perform independent DNS at five angles of θ = 0◦, 45◦, 90◦, 135◦ and θ = 180◦.
The shaded area shows the ±2σ [Nu] (standard deviation) around the mean for the
multi-fidelity models.

First, we contrast the prediction of the two models in figure 10(a,b). In figure 10(a),
a small number of samples of the low-fidelity and high-fidelity models are used,
which has resulted in large uncertainty around the mean. By significantly increasing
the number of samples from both levels of fidelities (figure 10b), the mean prediction
significantly improves, as it agrees well with the reference response (300 high-fidelity
and 1100 low-fidelity samples) and the independent DNS cases. Moreover, the
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standard deviation around the mean has decreased everywhere, implying a significant
improvement in the reliability of the prediction. In figure 10(b) the largest amount
of the standard deviation (variance) is observed at θ = 180◦, which coincides with
the region where the low-fidelity prediction is least accurate. On the other hand the
low-fidelity model agrees well with independent DNS and the reference response in
the aiding flow regime (θ ' 0◦). This physical intuition could be built into a targeted
sampling strategy in which new high-fidelity simulations/experimental measurements
are targeted in the high-variance region to better improve the mean and the variance
of the prediction.

In figure 10(c,d) we contrast two multi-fidelity models with the same number of
high-fidelity samples and different number of low-fidelity samples. Increasing the
number of low-fidelity samples improves both the mean prediction and it decreases
the variance of the prediction.

Including more low-fidelity points can only have a positive or neutral effect on
improving the accuracy of the final surrogate. In general, access to more training
points injects more information to the system and will always result to a GP
surrogate with higher marginal likelihood, leading to more refined estimates for the
model parameters and hyper-parameters. If these additional low-fidelity data are well
correlated with the high-fidelity observations then they would certainly improve the
predictions in regions where no high-fidelity data are available. On the other hand, if
the low- and high-fidelity data are not well correlated, or if we already have plenty of
high-fidelity observations in a specific region, then injecting more low-fidelity points
in that region will have no impact as the algorithm (by construction) will ignore them
during training (either by learning a ρ close to 0, or due to the Markov property of
(3.16)). One consideration here is that, although more low-fidelity points can only
have a positive effect, the training algorithms scale cubically with the number of
data, hence this can introduce a computational bottleneck. This unfavourable scaling
is a well-known limitation of Gaussian process regression, but it has been effectively
addressed in works by Snelson & Ghahramani (2006), as well as Hensman, Fusi &
Lawrence (2013).

5.3. Improved correlation
Using the multi-fidelity response surface, we now improve the correlation suggested
by Hatton et al. (1970), inspired from physical observations. In figure 11(a) the
experimental correlation (red curve) based on the vectorial addition (Hatton et al.
1970) along with multi-fidelity samples (blue symbols) and their mean (black curve)
are shown. Five independent DNS cases are also shown. The DNS samples are at
the same points used in figure 10. Due to the incomplete similarity of the mixed
convection with respect to θ the predictions do not coalesce on the experimental
correlation. A large deviation appears in the region of 10 < Reeff < 30, to which
a significant number of cases with opposing convection and Ri > 0.5 belong. For
example, the two DNS samples (red symbols) in this region are at θ = {135◦, 180◦}
and Ri = 1 and Re = 30. Consequently, these deviations result in the largest
overprediction of the mean of the multi-fidelity model by the experimental correlation.

The form of the improved correlation is inspired from the above observations. Our
proposed improved correlation still uses the equivalent concept by using the forced-
convection correlation given by (3.9) to predict Nusselt number. We instead modify
the definition of the effective Reynolds number as in the following:

Rem
eff = |g(θ, Ri)Ref ey + Reneg|, (5.2)
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FIGURE 11. (Colour online) Nusselt number for mixed convection around a cylinder
versus effective Reynolds number: (a) suggested by Hatton et al. (1970); (b) modified
Rem

eff obtained from the multi-fidelity model. Shown are correlation (red curve), mean
of the reference multi-fidelity model (black curve), multi-fidelity samples (blue symbols)
and independent DNS samples (the same as the five cases considered in figure 10)
(red symbols).
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where g(θ, Ri) is a pre-factor Reynolds number given by:

g(θ, Ri)= 1− aRi sin(θ/2). (5.3)

Therefore g(θ, Ri) adjusts the contribution of the forced-convection Reynolds number
to the effective Reynolds number. The parameter a is inferred from the multi-fidelity
predictions by performing least squares on the difference between the prediction
obtained from the multi-fidelity model and the low-fidelity model. The low-fidelity
predictions are obtained by using the above modified definition of the effective
Reynolds number given by (5.2). The modified effective Reynolds number is used
in the forced-convection correlation (3.9). The above proposed modification amounts
to a nonlinear and monotonic map of the effective Reynolds number suggested by
Hatton et al. (1970).

We sample the multi-fidelity response surface and the modified correlation for
100 000 random samples in the parametric space x = (Re, Ri, θ). The best value of
the parameter a obtained from the least squares is a= 0.38. The positive value of a
is consistent with our observations so far, in that for larger values of θ and Ri, the
effective Reynolds number and consequently the Nusselt number are overpredicted
using the vectorial addition suggested by Hatton et al. (1970). The overprediction is
more severe for larger values of θ , i.e. stronger opposing convection. The function
g(θ, Ri) corrects that trend by scaling down the forced-convection Reynolds number,
and it achieves that with no correction (g= 1) at θ = 0◦, where the low-fidelity model
is accurate, and at Ri= 0, where the mixed convection reduces to forced convection
and therefore the experimental correlation is accurate. However, g(θ, Ri) decreases
monotonically as θ increases from the aiding flow (θ = 0◦) to the opposing flow
(θ = 180◦) and as Richardson number increases from Ri = 0 (forced convection) to
Ri= 1 (mixed convection).

In figure 11(b), the improved correlation (red curve) based on the modified
effective Reynolds number, along with multi-fidelity and DNS samples are shown.
The colour/symbol style of figure 11(a) applies to this panel as well. We observe that
the improved correlation agrees significantly better with the mean of the reference
multi-fidelity model. Moreover, a smaller variance around the mean is observed
compared to the correlation suggested by Hatton et al. (1970). The improved
correlation shows relatively larger variance in the region of Rem

eff < 10. For example,
the DNS sample at Re= 30, Ri= 1 and θ = 180◦ lies in this region with Rem

eff = 3.3,
which shows that the proposed correlation underpredicts the opposing convection with
Ri ' 1. We note that the parameter a is obtained from the least squares approach
and as such the proposed correlation improves predictions overall as it is evident by
comparing figures 11(a) and 11(b).

6. Summary

In this paper, we introduced a multi-fidelity framework based on modern techniques
from machine learning, to obtain a stochastic response surface by combining
experimental correlations (low fidelity) and direct numerical simulations (high fidelity).
We considered the thermal mixed convection around a heated cylinder, for which there
is no correlation that accurately predicts the Nusselt number as a function of Reynolds
number (Re), Richardson number (Ri=Gr/Re2) and the angel (θ ) between the forced-
and natural-convection directions. This is due to the incomplete similarity of the
mixed-convection flow with respect to θ . We computed the average Nusselt number
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by sampling the low-fidelity correlation, suggested by Hatton et al. (1970), at a very
high rate and performing relatively few direct numerical simulations.

The multi-fidelity framework also provides a certificate of the fidelity by quantifying
the uncertainty associated with the predictions. The larger uncertainties of the
prediction are observed in the opposing-convection regime. This region coincides
with area where low-fidelity predictions are poor. The largest uncertainty regions
can be targeted by new high-fidelity samples, either direct numerical simulations
or accurate experimental measurements, to yield significant improvement in the
prediction.

Using the multi-fidelity response surface, we proposed an improved correlation by
modifying the definition of the effective Reynolds number. In the new definition of the
effective Reynolds number, the Reynolds number of forced convection is scaled down
with a nonlinear map, expressed as a monotonic function of the Richardson number
and the angle θ . This effective reparametrization was accurately calibrated using
the stochastic multi-fidelity response surface using least squares fitting. A possible
direction for future work, as tools of machine learning advance, is to directly infer
such nonlinear maps from data using deep and recurrent Bayesian learning techniques
(see Damianou & Lawrence 2013; Mattos et al. 2015).
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